Selective detection of abrupt input changes by integration of spike-frequency adaptation and synaptic depression in a computational network model.
نویسندگان
چکیده
Short-term synaptic depression (STD) and spike-frequency adaptation (SFA) are two basic physiological cortical mechanisms for reducing the system's excitability under repetitive stimulation. The computational implications of each one of these mechanisms on information processing have been studied in detail, but not so the dynamics arising from their combination in a realistic biological scenario. We show here, both experimentally with intracellular recordings from cortical slices of the ferret and computationally using a biologically realistic model of a feedforward cortical network, that STD combined with presynaptic SFA results in the resensitization of cortical synaptic efficacies in the course of sustained stimulation. This fundamental effect is then shown in the computational model to have important implications for the network response to time-varying inputs. The main findings are: (1) the addition of SFA to the model endowed with STD improves the network sensitivity to the degree of synchrony in the incoming inputs; (2) presynaptic SFA, whether slow or fast, combined with STD results in postsynaptic neurons responding briskly to abrupt changes in the presynaptic input current and ignoring sustained stimulation, much more effectively than either SFA or STD alone; (3) for slow presynaptic SFA postsynaptic responses to strong inputs decrease inversely to the input, whereas for weak input current to presynaptic neurons transient postsynaptic responses are strongly facilitated, thus enhancing the system's sensitivity for subtle changes in weak presynaptic inputs. Taken together, these results suggest that in systems designed to respond to temporal aspects of the input, SFA and STD might constitute two necessary, linked elements whose simultaneous interplay is important for the performance of the system.
منابع مشابه
Role of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملRecurrent Network Models for Perfect Temporal Integration of Fluctuating Correlated Inputs
Temporal integration of input is essential to the accumulation of information in various cognitive and behavioral processes, and gradually increasing neuronal activity, typically occurring within a range of seconds, is considered to reflect such computation by the brain. Some psychological evidence suggests that temporal integration by the brain is nearly perfect, that is, the integration is no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of physiology, Paris
دوره 100 1-3 شماره
صفحات -
تاریخ انتشار 2006